Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia.
نویسندگان
چکیده
BACKGROUND Myocardial perfusion during adenosine-induced hyperemia is used both in clinical diagnosis of coronary heart disease and for scientific investigations of the myocardial microcirculation. The objective of this study was to clarify whether adenosine-induced hyperemia is dependent on endothelial NO production or is influenced by adrenergic mechanisms. METHODS AND RESULTS In 12 healthy men, myocardial perfusion was measured with PET in 2 protocols performed in random order, each including 3 perfusion measurements. First, perfusion was measured at rest. Second, either saline or the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 4 mg/kg) was infused, and perfusion during adenosine-induced hyperemia was determined. Last, in both protocols, the alpha-receptor blocker phentolamine was infused, and perfusion during adenosine-induced hyperemia was determined again. Resting perfusion was similar in the 2 protocols (0.69+/-0.14 and 0.66+/-0.18 mL. min(-1). g(-1)). L-NAME increased mean arterial blood pressure by 12+/-7 mm Hg (P<0.01) and reduced heart rate by 16+/-7 bpm (P<0.01). Adenosine-induced hyperemia (1.90+/-0.33 mL. min(-1). g(-1)) was attenuated by L-NAME (1.50+/-0.55 mL. min(-1). g(-1), P<0.01). The addition of phentolamine had no effect on the adenosine-induced hyperemia (2.10+/-0.34 mL. min(-1). g(-1), P=NS). In the presence of L-NAME, however, when the adenosine response was attenuated, phentolamine was able to increase hyperemic perfusion (2.05+/-0.44 mL. min(-1). g(-1), P<0.05). CONCLUSIONS Inhibition of endogenous NO synthesis attenuates myocardial perfusion during adenosine-induced hyperemia, indicating that coronary vasodilation by adenosine is partly endothelium dependent. alpha-Adrenergic blockade has no effect on adenosine-induced hyperemia unless NO synthesis is inhibited.
منابع مشابه
Impact of type 2 diabetes on nitric oxide and adrenergic modulation of myocardial perfusion.
Type 2 diabetic patients are characterized by a reduced adenosine-induced hyperemic myocardial perfusion, which may contribute to their increased cardiovascular morbidity. We hypothesized that the reduced hyperemia can be explained by functional changes in endothelial or autonomic nervous regulation. In 12 type 2 diabetic patients without signs of ischemic heart disease and 14 age-matched contr...
متن کاملSystemic Inhibition of Nitric Oxide Synthase Unmasks Neural Constraint of Maximal Myocardial Blood Flow in Humans
Background—Nitric oxide (NO) is an endothelial mediator that regulates vascular smooth muscle tone, but it may exert its cardiovascular action also by modulating the autonomic control of vasomotor tone. We assessed the effect of simultaneous inhibition of both endothelial (eNOS) and neuronal (nNOS) NO synthase isoforms on myocardial blood flow (MBF) and coronary flow reserve (CFR) in volunteers...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملLetter regarding article by Kaufmann et al, "systemic inhibition of nitric oxide synthase unmasks neural constraint of maximal myocardial blood flow in humans".
BACKGROUND Nitric oxide (NO) is an endothelial mediator that regulates vascular smooth muscle tone, but it may exert its cardiovascular action also by modulating the autonomic control of vasomotor tone. We assessed the effect of simultaneous inhibition of both endothelial (eNOS) and neuronal (nNOS) NO synthase isoforms on myocardial blood flow (MBF) and coronary flow reserve (CFR) in volunteers...
متن کاملDisruption of inducible nitric oxide synthase improves beta-adrenergic inotropic responsiveness but not the survival of mice with cytokine-induced cardiomyopathy.
Transgenic (TG) mice with cardiac-specific overexpression of tumor necrosis factor-alpha develop congestive heart failure. We have previously reported that short-term inhibition of inducible nitric oxide synthase (iNOS) ameliorates beta-adrenergic hyporesponsiveness in TG mice. To examine whether long-term inhibition of iNOS may rescue TG mice from developing congestive heart failure, we disrup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 19 شماره
صفحات -
تاریخ انتشار 2001